16
Apr
15

[cs/0405018] Modeling Chaotic Behavior of Stock Indices Using Intelligent Paradigms

See on Scoop.itBounded Rationality and Beyond

The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of Nasdaq Stock MarketS and the S&P CNX NIFTY stock index. We analyzed 7 year’s Nasdaq 100 main index values and 4 year’s NIFTY index values. This paper investigates the development of a reliable and efficient technique to model the seemingly chaotic behavior of stock markets. We considered an artificial neural network trained using Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly explains how the different connectionist paradigms could be formulated using different learning methods and then investigates whether they can provide the required level of performance, which are sufficiently good and robust so as to provide a reliable forecast model for stock market indices. Experiment results reveal that all the connectionist paradigms considered could represent the stock indices behavior very accurately.

  
See on arxiv.org



Time is real? I think not

aprile: 2015
L M M G V S D
« Mar   Mag »
 12345
6789101112
13141516171819
20212223242526
27282930  

Commenti recenti

Inserisci il tuo indirizzo e-mail per iscriverti a questo blog e ricevere notifiche di nuovi messaggi per e-mail.

Segui assieme ad altri 833 follower

Latest Tweets

Alessandro Cerboni


%d blogger cliccano Mi Piace per questo: