22
Dic
15

Biochemical Mechanism Could Explain How Long-Term Memories Are Formed

See on Scoop.itLearning & Mind & Brain

For a memory to endure, and not fade away, the synaptic connections must be kept strong. In a previous study, Kandel and Si identified CPEB as a synaptic protein that is responsible for maintaining the strength of these connections in the sea slug, a model organism used in memory research. In subsequent research at the Stowers Institute, Si and his team identified Orb2 as the fruit fly version of the CPEB synaptic protein.
Illustration of synapses.

In their latest study, Mohammed ‘Repon’ Khan, a predoctoral researcher in the Si Lab and first author of the Cell paper, determined that Orb2 exists in two distinct physical states, monomeric and oligomeric. Monomeric Orb2 is a single molecule capable of binding to other molecules. Like CPEB, oligomeric Orb2 is prion-like – that is, it’s a self-copying cluster. However, unlike disease-causing prions, oligomeric Orb2 and CPEB are not toxic.

The paper describes how monomeric Orb2 represses while oligomeric or prion-like Orb2 activates a crucial step in the complex cellular process that leads to protein synthesis. During this crucial step, messenger RNA (mRNA), which is a RNA copy of a gene’s recipe for a protein, is translated by the cell’s ribosome into the sequence of amino acids that will make up a newly synthesized protein.

“We propose that the monomeric form of Orb2 binds to the target mRNA, and the bound mRNA is kept in a repressed state,” explains Khan.

The Stowers scientists also determined that prion-like Orb2 not only activates translation but imparts its translational state to nearby monomer forms of Orb2. As a result, monomeric Orb2 is transformed into prion-like Orb2, and its role in translation switches from repression to activation. Si thinks this switch is the possible mechanism by which fleeting experiences create an enduring memory.

“Because of the self-sustaining nature of the prion-like state, this creates a local and self-sustaining translation activation of Orb2-target mRNA, which maintains the changed state of synaptic activity over time,” says Si.

The discovery that the two distinct states of Orb2 have opposing roles in the translation process provides “for the first time a biochemical mechanism of synapse-specific persistent translation and long-lasting memory,” he states.

See on neurosciencenews.com



Time is real? I think not

dicembre: 2015
L M M G V S D
« Nov   Gen »
 123456
78910111213
14151617181920
21222324252627
28293031  

Commenti recenti

Inserisci il tuo indirizzo e-mail per iscriverti a questo blog e ricevere notifiche di nuovi messaggi per e-mail.

Segui assieme ad altri 833 follower

Latest Tweets

Alessandro Cerboni


%d blogger cliccano Mi Piace per questo: