01
Mar
16

Bounded Rationality and Correlated Equilibria

See on Scoop.itBounded Rationality and Beyond

Abstract: We study an interactive framework that explicitly allows for nonrational behavior. We do not place any restrictions on how players’ behavior deviates from rationality. Instead we assume that there exists a probability p such that all players play rationally with at least probability p, and all players believe, with at least probability p, that their opponents play rationally. This, together with the assumption of a common prior, leads to what we call the set of p-rational outcomes, which we define and characterize for arbitrary probability p. We then show that this set varies continuously in p and converges to the set of correlated equilibria as p approaches 1, thus establishing robustness of the correlated equilibrium concept to relaxing rationality and common knowledge of rationality. The p-rational outcomes are easy to compute, also for games of incomplete information, and they can be applied to observed frequencies of play to derive a measure p that bounds from below the probability with which any given player chooses actions consistent with payoff maximization and common knowledge of payoff maximization.

See on halshs.archives-ouvertes.fr



Time is real? I think not

marzo: 2016
L M M G V S D
« Feb   Apr »
 123456
78910111213
14151617181920
21222324252627
28293031  

Commenti recenti

Inserisci il tuo indirizzo e-mail per iscriverti a questo blog e ricevere notifiche di nuovi messaggi per e-mail.

Segui assieme ad altri 833 follower

Latest Tweets

Alessandro Cerboni


%d blogger cliccano Mi Piace per questo: