Archivio per ottobre 2018


Semantic information, agency, & physics

via Semantic information, agency, & physics

Shannon information theory provides various measures of so-called syntactic information, which reflect the amount of statistical correlation between systems. By contrast, the concept of ‘semantic information’ refers to those correlations which carry significance or ‘meaning’ for a given system. Semantic information plays an important role in many fields, including biology, cognitive science and philosophy, and there has been a long-standing interest in formulating a broadly applicable and formal theory of semantic information. In this paper, we introduce such a theory. We define semantic information as the syntactic information that a physical system has about its environment which is causally necessary for the system to maintain its own existence. ‘Causal necessity’ is defined in terms of counter-factual interventions which scramble correlations between the system and its environment, while ‘maintaining existence’ is defined in terms of the system’s ability to keep itself in a low entropy state. We also use recent results in non-equilibrium statistical physics to analyse semantic information from a thermodynamic point of view. Our framework is grounded in the intrinsic dynamics of a system coupled to an environment, and is applicable to any physical system, living or otherwise. It leads to formal definitions of several concepts that have been intuitively understood to be related to semantic information, including ‘value of information’, ‘semantic content’ and ‘agency’.


Connectivity and complex systems: learning from a multi-disciplinary perspective

via Connectivity and complex systems: learning from a multi-disciplinary perspective

Connectivity and complex systems: learning from a multi-disciplinary perspective

In recent years, parallel developments in disparate disciplines have focused on what has come to be termed connectivity; a concept used in understanding and describing complex systems. Conceptualisations and operationalisations of connectivity have evolved largely within their disciplinary boundaries, yet similarities in this concept and its application among disciplines are evident. However, any implementation of the concept of connectivity carries with it both ontological and epistemological constraints, which leads us to ask if there is one type or set of approach(es) to connectivity that might be applied to all disciplines. In this review we explore four ontological and epistemological challenges in using connectivity to understand complex systems from the standpoint of widely different disciplines. These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating structural connectivity from functional connectivity; (iii) understanding emergent behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social Network Science and Systems Biology to explore the use of connectivity among these disciplines. We evaluate how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and propose a ‘common toolbox’ underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.


Hello World: Being Human in the Age of Algorithms (Hannah Fry)

via Hello World: Being Human in the Age of Algorithms (Hannah Fry)

A look inside the algorithms that are shaping our lives and the dilemmas they bring with them.

If you were accused of a crime, who would you rather decide your sentence―a mathematically consistent algorithm incapable of empathy or a compassionate human judge prone to bias and error? What if you want to buy a driverless car and must choose between one programmed to save as many lives as possible and another that prioritizes the lives of its own passengers? And would you agree to share your family’s full medical history if you were told that it would help researchers find a cure for cancer?


On the Extraordinary Importance of Complexity

via On the Extraordinary Importance of Complexity

Of all physical quantities, energy is probably the most important. Energy expresses the capacity of a body or a system to perform work. Nature works by using energy to transform matter. This is done via processes (physical, chemical, etc.). However, in order to realize these processes it is necessary to have information. Energy on its own is not sufficient. One must know what to do with it and how to do it. This is where information comes into the picture. Information is stored and delivered in a variety of ways. The DNA, for example, encodes biological information.


Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents

Abstract Psychlab is a simulated psychology laboratory inside the first-person 3D game world of DeepMind Lab (Beattie et al., 2016). Psychlab enables implementations of classical laboratory psychological experiments so that they work with both human and artificial agents. Psychlab has a simple and flexible API that enables users to easily create their own tasks. As examples, we are releasing Psychlab implementations of several classical experimental paradigms including visual search, change detection, random dot motion discrimination, and multiple object tracking. We also contribute a study of the visual psychophysics of a specific state-of-the-art deep reinforcement learning agent: UNREAL (Jaderberg et al., 2016). This study leads to the surprising conclusion that UNREAL learns more quickly about larger target stimuli than it does about smaller stimuli. In turn, this insight motivates a specific improvement in the form of a simple model of foveal vision that turns out to significantly boost UNREAL’s performance, both on Psychlab tasks, and on standard DeepMind Lab tasks. By open-sourcing Psychlab we hope to facilitate a range of future such studies that simultaneously advance deep reinforcement learning and improve its links with cognitive science.

DeepMind, London, UK February 6, 2018

Time is real? I think not

ottobre: 2018
« Set   Nov »

Commenti recenti

Lorenzo Bosio su Un testo che trascende le sue…

Inserisci il tuo indirizzo e-mail per iscriverti a questo blog e ricevere notifiche di nuovi messaggi per e-mail.

Segui assieme ad altri 1.040 follower


%d blogger hanno fatto clic su Mi Piace per questo: